
Simultaneous Multithreading
in Mixed-Criticality Real-Time
Systems
Joshua Bakita, Shareef Ahmed, Sims Hill Osborne, Stephen
Tang, Jingyuan Chen, F. Donelson Smith, James H. Anderson

Department of Computer Science
University of North Carolina, Chapel Hill

1

How do we get
more capacity
out of multicore?

2

How do we get more capacity out of multicore?

3

Mixed-Criticality
Provisioning

Hardware Partitioning
Simultaneous

Multithreading (SMT)

➔ Reduces capacity loss by
reclaiming slack for
low-criticality work

➔ Reduces capacity loss by
removing interference that
inflates execution times

➔ Reduces capacity loss due
to intra-core execution unit
stalls

➔ Allows processor cores to
dispatch from two i-streams
("threads") simultaneously

➔ Available in many CPUs now

Mixed-Criticality Scheduler Hierarchy Shared Last-Level Cache Partitioning Two Tasks on a Core Without/With SMT

Combined in MC²,
Mixed-Criticality on

Multicore

What if we also
combine this?

Key Questions

4

SMT + Cache Partitioning
SMT + Mixed-Criticality

(MC) Provisioning

Evaluation of SMT +
Cache Partitioning + MC

Provisioning

Can we handle many
shared cache levels?

Does it help SMT?

What are the quantitative
benefits?

Can we validate the
benefits via a case study?

How to map SMT into a
mixed-criticality context?

SMT + Cache Partitioning

5

Question 1 of 3

Can we handle many
shared cache levels?

Consider our platform: the AMD Ryzen
9 3950X (chosen for its similarity to
upcoming embedded ARM designs)

SMT threads share the L1I, L1D, L2,
and L3 caches!

Can we simultaneously partition that
many caches?

6

SMT + Cache Partitioning

➔ Implementation is 23 lines,
versus hundreds before

➔ More efficient and
comprehensive than prior page
coloring work

AMD Zen 2 Cache Hierarchy

L2Core 0

Core 1

Core 3

Thread 6
Thread 7

Thread 4
Thread 5

Thread 2
Thread 3

Thread 0
Thread 1

L2

L2

L2

L3

L1D CacheL1I Cache

L1 is too small for
any partitioning

techniques to work

L2 can be split
between SMT

threads with page
coloring

Partitioning the L2 also
subdivides the L3

Hardware features
subdivide the L3
among cores and

criticalities

Does this help SMT?

We measure the maximum execution time of all
possible task pairings under all cache partitioning
approaches and compare to sequential execution
times.

7

SMT + Cache Partitioning

Observations:
➔ SMT is broadly beneficial

Bench
Suite

Configuration % of Pairings
where SMT is
Beneficial

TACLe No Cache Iso. 85%
L3 Isolation 83%
L2+L3 Iso 85%

DIS No Cache Iso. 100%
L3 Isolation 100%
L2+L3 Isolation 100%

SD-VBS No Cache Iso. 95%
L3 Isolation 95%
L2+L3 Isolation 95%

➔ Cache isolation minimally impacts SMT
effectiveness

SMT + Mixed-Criticality (MC)
Provisioning

8

Question 2 of 3

How to map SMT
into a MC context?

Level A uses coscheduling [1,3]

Level C uses clustered EDF
➔ Each cluster is either threaded

or unthreaded
➔ Threaded clusters treat threads

as additional cores (as in [2])
➔ Unthreaded clusters behave

similarly to standard CEDF

9

SMT + MC Provisioning

𝜏ₐ,ₓ indicates the xth job of task a.

Level B uses coscheduling [1,3]

Coscheduled
Tasks

Evaluation of SMT + Cache
Partitioning + Mixed Criticality
Provisioning

10

Question 3 of 3

What are the
benefits?

We measure improvement with an
overhead-aware schedulability study

11

Evaluation

Improvement in
Schedulable

Utilization Area
(SUA)

➔ Results show what percentage
of synthetic task systems of a
specific total utilization can be
scheduled such that they meet
all deadlines.

➔ We consider 240 different
synthetic system configurations
(with parameters informed by
benchmarks).

Sample Schedulability Graph

32%
Average Improvement in Schedulable Utilization Area (SUA)

12

Can we validate the benefits via a case study?

Case Study:
➔ Do tasksets claimed schedulable by our

schedulability study run without deadline
misses on our platform?

Evaluation of SMT + Cache Partitioning + MC Provisioning

Results:
➔ Tested 10 tasksets for 60 minutes (tens of

thousands of jobs)
➔ No deadline misses at any criticality level!

◆ Surprising due to the presence of soft-real
time tasks

◆ May indicate that our provisioning is
conservative

We implemented our system combining SMT +
Multi-Level Cache Partitioning + Mixed Criticality
Provisioning in LITMUSᴿᵀ 5.4.

13

Conclusions

14

SMT + Cache Partitioning
SMT + Mixed-Criticality

(MC) Provisioning

Evaluation of SMT +
Cache Partitioning + MC

Provisioning

Can we handle many
shared cache levels?

Does it help SMT?

What are the quantitative
benefits?

Can we validate the
benefits via a case study?

How to map SMT into a
mixed-criticality context?

Yes!

No

Coscheduling for
high-criticality

Clustered scheduling
for low-criticality Yes!

32%

Thanks!
Questions?

Read our paper!

Future work:
➔ Effects of other isolation

techniques on SMT behavior?
➔ GPU sharing in a

mixed-criticality system?
➔ SSD sharing in a

mixed-criticality system?

Contact:
Email: jbakita@cs.unc.edu
Web: https://cs.unc.edu/~jbakita

Flowers of the University of North Carolina at Chapel Hill, Own Work, Spring 2021 15

